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Abstract

The problem considered is that of a line force acting normal to the free surface of a bimaterial welded together at the
bimaterial interface. The constitutive equations of each constituent of the bimaterial are such that the stress—strain
relation is linear in one half but non-linear in the other. The case where both satisfy non-linear stress—strain relations
can also be dealt with by the method of this paper. It is shown that in general, there is no separable solution, singular at
the application of the line force, which satisfies the field equations of each medium. Instead asymptotic solutions are
constructed for the cases where the non-linear medium is incompressible with power law stress—strain relation (i.e.
o~ ¢V, with N > 0) distinguishing between the cases where N is less or greater than unity. The characteristics of the
asymptotic solutions are first illustrated by modelling non-linear potential problems, which can be viewed as anti-plane
strain deformation. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

We consider the situation depicted in Fig. 1. A bimaterial is constructed of two half-spaces welded
together along a common half-plane. The medium is assumed infinite in a direction normal to the figure.
Loads are applied to a free surface which is perpendicular to this common half-plane. The direction of the
load is perpendicular to the free surface and is a line load acting on the line at which the bimaterial
boundary cuts the free surface. Fig. 1 shows a two-dimensional cross-section, all loads and displacements
being independent of the spatial coordinate perpendicular to the figure. Bogy (1970) solved this problem for
the case of linear elasticity in both materials, and the concentrated force as a particular case of arbitrary
boundary tractions. We begin with a description of a model potential problem (anti-plane strain) and then
proceed to the case when the bimaterial consists of a linear elastic plus a power law hardening (softening)
incompressible material (e.g. a material which deforms according to the theory of deformation plasticity).
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Fig. 1. Cross-section perpendicular to the line load direction: plane strain deformation.

1.1. A model potential problem (anti-plane strain deformation)

It is most convenient to describe these problems in terms of anti-plane strain deformation. The situation
is depicted in the two-dimensional cross-section shown in Fig. 2. A line load acts along the y-axis imposing

shear in the y-direction on a free surface at z = 0.
The region x > 0 is occupied by a material such that the only non-zero stresses are

10 0
o) = Vo[ o) = v

where

ot (2) ()

The equilibrium equations

0o,, 00,
ox 0z

give for the constitutive equations (1.1) the non-linear partial differential equation

<| ¢Nla¢l> (IVQSIN]%):O forx >0, z> 0.

In the region x < 0, the material is linear with shear modulus, u, and stresses

=0

linear medium (2) non-linear medium (1)

v
=

Fig. 2. Cross-section perpendicular to the line load direction: anti-plane strain deformation.
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The equilibrium equations (1.3) result in
P, ¢,
e T =0 forx<0,z>0. (1.6)

The welded boundary conditions on the bimaterial interface require continuity of displacements and
tractions across the plane x = 0. These can be written as
¢ =,
o) = @ onx=0, z>0. (17)

Xy Xy

For the situation when medium (1) is linear i.e. when N = 1, the well-known solution for a line force (or
two-dimensional point force) acting at the origin x = 0, z = 0 can be written as

¢1 = ¢, =Alnr, (1.8)

where 7> = x> + z> and the constant A4 being determined from the strength of the force.

This solution satisfies the continuity conditions (1.7) as well as zero traction on the free surface z =0
except for the load point where the stress is singular. The solution given in Eq. (1.8) is no longer valid in
both media when N # 1 in medium (1). For this situation, the form of the solution differs for the cases
where the exponent N is less or greater than one.

If N <1 in region (1), then assuming a solution of the form (1.8) in region (2) leads, by continuity of
displacements on the bimaterial interface, to a stress af,ly) in medium (1) which is singular like =¥, where r is
a two-dimensional radial coordinate measured from the point of action of the point force. This stress field
which is non-zero at the bimaterial interface requires a displacement in region (2) which behaves like '~ as
r tends to zero (cf. constitutive equations (1.5)) in order to satisfy continuity of oy, on x = 0. Matching this
displacement (for displacement continuity on x = 0) leads to the next term in the displacement and stress
expansion for small  in medium (1). In this way, an expansion of the solution in both media valid for small
r is obtained which satisfies zero tractions on the free surface and continuity of both traction and dis-
placement at the bimaterial interface. The details of this solution require solution of various subsidiary
boundary value problems and subsequent numerical solution of certain non-linear differential equations
(Section 2.1).

If N > 1 in medium (1), the nature of the solution is somewhat different. For this case, the leading term
in the expansion for the solution for small r consists of the line force (two-dimensional point force) solution
for the power law material of a homogeneous medium. This has stress field ag) = Ar~! with corresponding
displacement ¢, which behaves like »'~(!/V) as r tends to zero. For continuity of displacements across the
bimaterial interface, this requires ¢, behaving like '~('/¥) also, which results in o) proportional to /" as
r tends to zero. Subsequent terms in the expansion of the solution in each medium are derived in Section
2.2, where the various angular forms of the terms in the solution are also given.

1.2. Plane strain deformation
The situation considered here is shown in Fig. 1. The constitutive relation governing the material in
medium (1) is a power law hardening (softening) relation between the stresses ¢;; and strains ¢;; of the form
s = 2ul™ ey, (1.9)
where N is the hardening coefficient, the stress deviator is
iy = 0 — 00y, (1.10)
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where ¢ is an arbitrary pressure and

The summation convention over repeated indices is used here.

uI’™~! plays the role of a generalised shear modulus for the physically non-linear material. In the case
N =1, it is just the shear modulus of the linear elastic medium. This constitutive relation has been used by
Arutiunian and others to study contact problems in non-linear creep (see Arutiunian (1967) for a review
and Atkinson (1971)). It has also been used to study plastic stress and strain fields at crack tips (see e.g.
Hutchinson (1968a,b), Rice and Rosengren (1968)). The problem of the stress field of crack tips on bi-
material interfaces has been considered by Champion and Atkinson (1990). Lau and Delale (1988) con-
sidered the problem of two bonded wedges with power-law hardening, but only for two equal wedges of
total angle 180°. Xia and Wang (1993) studied the case of a single wedge of arbitrary angle with various
hardening exponents, while the case of two bonded of arbitrary angle and having the same hardening
exponent has been studied by Rudge (1993) and Rudge and Tiernan (1999). For this case, since the ex-
ponents are the same for each medium, a single separable solution can be looked for which is valid in a
region close to the wedge tip resulting in a single non-linear eigenvalue equation.

The nature of the solution for the situation considered here is much more complicated than that of
Section 1.1 but the argument is somewhat similar. For the case when the exponent N is less than unity, the
leading solution corresponds to a point force acting on a half-space of a homogeneous linear elastic me-
dium. This solution has a displacement field which is singular like Inr and a stress field singular like ~!. As
before, the strength of the force determines this singular field precisely. Continuity of displacements at the
bimaterial interface leads to a displacement field in medium (1) which is singular like Inr and a stress field
singular like 7~ with appropriate coefficients functions of the angular coordinate which satisfy non-linear
ordinary differential equations. This suggests that the next term for the displacements in the linear medium
(2) behaves like 7!~V times an appropriate function of theta as r tends to zero and so on. The asymptotic
expansion of the various fields, valid as r tends to zero, are given in Section 3.2.

For the case N > 1, the situation parallels that discussed in Section 1.1 for the anti-plane problem. The
leading term in medium (1) is now that of a point force acting on a half-space of a material with constitutive
equations (1.9). The solution for the particular case of a point force acting normal to the free surface was
given in Arutiunian (1959) for plane strain and in Atkinson (1973) for plane stress. This solution has the
stress 65} ) singular like 7! as r tends to zero and hence a displacement like »'~(!/V)_ There are of course two
non-zero components of displacement here with appropriate angular variation. A solution in the linear
medium (2) can be constructed which is traction free on the free surface and is continuous with the dis-
placement above on the bimaterial interface i.e. the displacement behaves like '~(/V) as r tends to zero in
medium (2). The corresponding stress is then singular like »~'/V. Again successive terms in an asymptotic
expansion, valid as r tends to zero, can be set up. See Section 3.3 for the details.

In Section 4, a number of results are collected and the various angular variations of the solutions dis-
played (as above these will result from numerical solutions of ordinary differential equations). Note that the
procedure outlined here will apply equally well, at the expense of some complication, to situations where
each of the bimaterial media satisfies a different non-linear constitutive relation.

One further point is worthy of mention: we have assumed that the force acting on the interface is also in
the plane of the interface (and perpendicular to the free surface for the plane strain situation) and satisfied
the balance of force conditions for this to be so. However, because of the asymmetry of the problem, some
sort of control procedure might be necessary in practice since applying a line load in a direction normal to
the boundary would encounter a net force perpendicular to the interface due to the asymmetry. Either of
the above two situations can be modelled by the analysis described below.

As discussed above, we generate the solution as a sum of solutions of subsidiary problems each of which
has a factor involving an exponent of r (occasional solutions also involve factors logarithmic in r). These



C. Atkinson, C. Blanco | International Journal of Solids and Structures 38 (2001) 41994220 4203

solutions, which are valid for r tending to zero, have exponents which are higher powers of r as the series
progresses so that successive solutions decrease in magnitude of r sufficiently small. Since our purpose is to
generate the small r solution in a systematic way, we have not posed the problem in a manner that would
lead to an existence theorem. We could probably have set the problem up in terms of non-linear integral
equations and studied the problem from a theoretical point of view (see e.g. Champion and Atkinson
(1993), where this is done for a non-linear bimaterial interface crack).

2. Anti-plane strain deformation: analysis
A two-dimensional cross-section and the polar coordinate system are shown in Fig. 2. The line load acts

on the free surface z = 0, along the y-axis which is normal to the plane of the paper.
Asymptotic solutions

¢i:¢io+¢i1+¢i2+"' (2-1)
with

. qsi(/ﬂ)_ . .

11113—_0 Vi=0, i=1,2 (2.2)

ij

will be constructed for both materials.
2.1. Case N < 1

In this case, we take the solution for the homogeneous elastic medium as the leading term of the solution
for the medium (1), i.e.

¢y = A Inr, (2.3)
where 4, is a constant that will be calculated from the strength of the force P.

The continuity of displacements on the interface leads us to a leading term for the non-linear medium (1)
of the form

¢1o = A1(Inr + G1(0)) (2.4)

(note that the angular term contributes to the singularity of the stresses).
The equilibrium equation (1.4) then gives the non-linear differential equation

a-mi+@oy] g { [+ @on] e} o 23)
where G (0) = dG,(0)/dé.

The boundary conditions of zero traction on the free surface and continuity of displacements on the
interface give respectively the conditions

(N-1)/2

G (0)=0 and Gl(g) —0. (2.6)

Results for Eq. (2.5) subject to the boundary conditions (2.6) are shown in Section 4, in Fig. 3.

Using the constitutive equations (1.1), the solution (2.4) gives a stress field singular like »~ when r tends
to zero, which is not zero on the interface. The condition of traction continuity on the interface requires a
displacement field in medium (2) which behaves like 7'~ when r tends to zero. We get this by adding to the
asymptotic expansion of the solution ¢, a new term as follow:
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Fig. 3. Angular coefficient G; () in the leading term of the displacement of the non-linear medium (anti-plane strain deformation) for
different values of N < 1.

¢y = Ay Inr + A"V cos((1 — N)(n — 0)). (2.7)

This function ¢, satisfies Laplace’s equation and the free surface condition. Imposing the continuity of
stresses on the interface, we obtain for 4,

Cu [Tr@E] e

T (I=N)sin[(1-N)Z] U (2.8)

2

Eq. (2.7) shows that, in order to match displacements on the bimaterial interface, the next term of the
expansion of the solution ¢, should be '~ times a function of 0.
We take

¢ = A {Inr+ G (0) + ' NGy (0)}, (2.9)
where the function G,(0) should satisfy (cf. Eq. (1.4)) the linear differential equation
(1= NP {2207 = 201 = W) + GLO)]2(0) > = (V = 3)(G(0)) G (0)2(0)" " } G (0)
+ (1 =M{36G 0V - 1-G0)]2(0)" " = (N = 3)(G1(0)) G1(0)2(0)" "} G5(0)
+ {oc(e)UV*”/2 +(N=1)(G, (9))%(9)”*”/2}(;;'(9) —0, (2.10)

where 2(0) = 1 + (G| (9))2.

The free surface condition requires

G,(0)=0 (2.11)
and the continuity of displacements on the interface
T T
41G:(3 ) = Azcos (1= V) T . (2.12)

The differential equation (2.10) is solved numerically (Section 4).
The solution (2.9) for ¢, adds an additional contribution to the stress that is singular when r tends to
zero like #!72¥, which leads to the addition of the next term of the solution ¢,
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¢, = Ay Inr + A"V cos (1 — N)(n — 0)) + 43> cos (2(1 — N)(n — 0)) (2.13)
with
e I € BT 6 | (R O RRACI L))
a3} o

in order to satisfy the continuity of stresses on the interface.

Proceeding in the same manner as above, the next terms of the asymptotic expansion of the solutions can
be deduced. It remains to calculate the value of the coefficient 4; in the leading term of both functions ¢,
and ¢, (cf. Egs. (2.3) and (2.4)). The net force acting on the origin is

E:/O'idej, i:1,2,3, (215)
N

where S is an infinitesimal surface surrounding the origin (cf. Fig. 2). As in this case, the only non-zero
stresses are g, and g, the components F; and F, are zero. The component F, (that should be equal to P) in
cylindrical coordinates can be written as

s

P=I1m [ o,¢&d0, (2.16)

e—0 0

this implies
/2
P:,ullirrol/ |V¢1\N’l%sd9+u2hm/ 9, 40. (2.17)
=0 Jo r /2

For the non-linear medium, |V, [V (9¢,/0r) ~ ¢V (cf. Eq. (2.9)) and in this case N < 1, so the first
term of the right hand side of Eq. (2.17) becomes zero.
In the integral corresponding to the linear medium

a('iz.c =4, +&"N[Arcos((1 = N)(m — 0)) + Ase' Veos(2(1 = N)(n — 0)) + - -] (2.18)

so only the leading term of the expansion of ¢, contributes to the integral and the following value for 4, is
obtained:
2P

A= 2.19
', (2.19)

2.2. Case N > 1
In this case, the line force solution for the power law material of a homogeneous medium is taken as the
leading term in the expansion for the solution of the bimaterial
P10 = BV, (2.20)

where B, is a constant that will be determined later.
The continuity of displacements on the interface requires for the linear medium (2) a leading term of the
form
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¢y = Bor' =V cos Kl - %}) (m— 0)} (2.21)

with

cos[(1-3)5]
This solution for the linear medium satisfies the equilibrium equations and the boundary conditions of free
traction on the free surface and continuity of displacements on the interface. However, the stress field
associated with these displacements is singular like 7~(/Y) when r tends to zero. To match the stress on the

interface, the next term of the expansion of the non-linear medium is added.
If we consider a solution of the form

(2.22)

¢, = BN 4 2020/ £(9), (2.23)

the solution for the equilibrium equation with the boundary conditions of continuity of stresses on the
interface and zero traction on the free surface is

10 rr=pravai=gg = 0 ) @
with
p= ZTB% (1-%)2_Nsm{<1—]iv>g]. (2.25)

However, this solution is not valid for those values of N that satisfy sin[v2N(1 — (1/N))j] = 0.
In this case, a general function is taken as the second term of the expansion

¢, =B =YY L F(r,0). (2.26)

In order to satisfy the equilibrium equation (1.4) to the next order, the function F(r, #) should satisfy

PF 10F 13K
N—- - —=0. 2.27
62+r 6r+r2 00> (2.27)
The boundary conditions of continuity of stresses on the interface and free tractions on the free surface
require the conditions

6F1 _ ﬁ —(1/N)) on 6 _g
(2.28)
% =0 on6=0
o0 o
Solving Eq. (2.27) subject to the conditions (2.28) gives Fi(r, 0) as a function of the form
Fi(r,0) = PN (£,(0) + fi2(0) Inr) (2.29)
with
Ju(0) = f Hsin[v2N<l—l>0] +Ccos[v2N(l—l>0}
VAN(1 = )5 cos (V2N (1 - 7)5) N N
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20 = ety v L ()1 >

where C is an arbitrary constant. Note that in the denominator of Egs. (2.30) and (2.31)
cos [V2N(1 — (1/N))n/2] = %1 since N is such that sin [v2N(1 — (1/N))n/2] = 0.

Also, the angular coefficients for the second term of the expansion of the displacements on the non-linear
medium change sign as 0 varies between 0 and 7/2 often as N gets large. However, it may have little effect in
the full solution of ¢, since these terms are multiplied by powers of r larger than the leading term and hence
are not so significant as r tends to zero.

The next step will be to add another term to the expansion of the displacements in the linear medium in
order to match the displacements on the interface. When sin [v2N (1 — (1/N))n/2] # 0, the solution (2.23)
leads us to take

¢, = Byr' =N cos Kl - %) (m— 9)} + B3?1= /M) ¢os [2(1 - %v) (n— 9)] (2.32)

with
_ h(B)
b= ki 239

Note that this is not singular when N = 2 since fi(n/2) cancels the denominator of Eq. (2.33) in this case.
When sin [V2N(1 — (1/N))n/2] =0,

¢, = Byr' =N cos Kl - %) (m— 0)} + AN (61(0) + f22(0) Inr) (2.34)
with

B B . 1

e LU d ULt
tan [2(1 —1)%] 1
e et b (5] 233)

_ —$ !

S2(0) = N =D Tcos 2(1=1)1] cos [2(1 _N>(n — 0)} (2.36)

Note that cos[2(1 — (1/N))n/2] # 0 in Egs. (2.35) and (2.36) since sin [V2N(1 — (1/N))n/2] =0, that
means N # 2.

The next terms of the asymptotic expansion of the solutions could be deduced. In this case, imposing the
condition [ 0,,ds = P for an infinitesimal surface surrounding the origin, and proceeding as in the case
N <1 gives for By:

N /2P \'"V
Bl=— (=) . (2.37)
N — 1\ ny,

3. Plane strain deformation: analysis

The coordinate system considered in this case is shown in Fig. 1. As above, the line load acts on the y-
axis, but the non-linear and incompressible medium (1) is located in the region x > 0, z > 0 and the linear
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medium (2) in x > 0, z < 0, so the bimaterial interface coincides with the x-axis. All fields are assumed
independent of the y-coordinate.

3.1. Basic equations

In this section, we use for the stress and displacement fields of the non-linear medium the same no-
tation as Atkinson and Champion (1991). The constitutive equations take the form (cf. Egs. (1.9) and

(1.10))

ol(:}) =00y, + 20,7Vl (3.1)

i

where ¢ is an arbitrary pressure and I', the effective strain (cf. Eq. (1.11)).
The strains 85;) are given by

1 { oulV ou'V
o _L(ou oy 2
81_/ 2 < an + axl_ ) (3 )

where u,m are the cartesian components of the displacement field and (xi, x», x3) is equivalent to (x, y, z). As

the material (1) is incompressible, the following condition must be satisfied:

8[([_1) =0, (3.3)

where the summation over repeated indices is again used.
The effective stress, 7, is defined by

1/2
T = (354) (3.4)
with the deviatoric stress components s;; defined in Eq. (1.10).
From the constitutive equations (3.1), the effective stress 7 is related to the effective strain by
T =uI". (3.5)

As the situation considered is a plane problem, it is convenient to work in a polar coordinate system (cf.
Fig. 1).
In polar coordinates, the strain—displacement equations (3.2) may be written as

ouD
(0 — 2
b or’
1 { oulV
o _Lfouy
i ( a0 T ) (3.6)

1o 1 1 dulV
(n _ o 1 (1) 1Y%
& _2< o +r o0 |’

the incompressibility conditions (3.3) become

el bl =0 (3.7)

r

and the effective strain
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r= 2(83)2 + sﬁ,l))z) 1/2. (3.8)
Some other relations which follow from the constitutive equations (3.1) are

o =1(a) + i), (3.9)

s =30l = o)) = 20 el), (3.10)

oll) = 20, V16l (3.11)

In addition to the above equations, the usual equilibrium equations must be satisfied in both media. In
polar coordinates, these may be written as

0o, 100, 1 B
o o0 Ty ow) =0,
60,0 1 6000 2 -

ar a0 o=

(3.12)

For the non-linear medium, using Egs. (3.9) and (3.10), these equations may be rewritten as

o+s,) 106 2
oc') 103(c—s,) 2 m

o Ty o0 Ty =0

and eliminating the pressure, o,

o (os, lds) 2 o ( daly) bs. .
ae(ar+rae ) =a e a0 TR ) (3.14)

3.2. Case N < 1

As in the last section, asymptotic solutions will be constructed for both materials.

i

uf) =y

(i=1,2). (3.15)

When the hardening coefficient N is less than unity, the leading term taken for the asymptotic expansion in
the linear medium is a solution of the form

1 k—1_,

(3.16)

w(0) = cos (0 — 6,), (3.17)
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which corresponds to the solution of a line load acting on the surface of a semi-infinite homogeneous
medium, forming an angle, 6, with the normal to the free surface. A; is a constant that will be calculated
later and x = 3 — 4v for plane strain.

The corresponding stress field is

8,4
Jg,)o = ﬁw(@), ‘7%?0 = 0'2%))40 =0 (r>0). (3.18)

In order to match displacements on the bimaterial interface, the displacement field corresponding to the
non-linear medium (1) should satisfy on 0 =0

| 1
“50) = A, (lnr ) cosf,

) (3.19)
uyy = A, (lnr + K——|-1> sin ;.
We consider a displacement field of the general form
uly = Ailgi(0)Inr + &:(0)),
uyy = Ay[h (0)Inr + hy(0)). (320)

The following expressions for g; and #; are found to remove any dependence on Inr in the strains (Eq.
(3.16)) and permit continuity with the Inr terms in Eq. (3.19) above:

£1(0) = w(0), (3.21)
hi(0) = '(0),
while the functions g, and #, satisfy
—cos b,
£:(0) = ;
? (k+1) (3.22)
ha(0) = sin 0, '
T w1y

Moreover, the incompressibility condition requires
21(0) + 2(0) + h5,(0) =0 (3.23)

so the only unknown function involved in the displacements is /,, which will be found by imposing the
conditions that the stresses associated with this displacement field satisfy the equilibrium equation.
From Egs. (3.9)—(3.11) and (3.20), we obtain for the stress field

s =1"A(0),

3.24
o) = rB(0), B2
where
2] (V=12
A(0) = 47 2ug: [4(&)2 + (ha + 1Y) } ; (3.25)
N " 2 2 W-1)/2
BO) = —AY (ko + 1) [4(20)" + (o + 1] (3.26)

Eq. (3.14) becomes
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2(1=N)A'(0)+B"(0) + N(2—N)B(0) = 0. (3.27)
The condition of free traction on the surface 6 = n/2 implies
(T _ L L
B(2)+2(1 N)A(z) 0, 3(2) 0. (3.28)

The differential equation (3.27) can be rewritten as
n/2 n/2
B(0) = —N(2— N) / (t— 0)B()dt +2(1 — N) / Al ds, (3.29)
0 0

where the conditions (3.28) have been used.
Finally, substituting the Eqgs. (3.21), (3.25) and (3.26) into Eq. (3.29), a non-linear integro-differential
equation for 4, is obtained with the initial conditions (cf. Egs. (3.22) and (3.23))

sin 0, —Kkcos b,

(0) = (o) =~

= (3.30)

This non-linear integro-differential equation will be solved numerically (Section 4).
To clarify the procedure, before going on with the next step, the results obtained until now are sum-
marised. The leading terms found for each asymptotic expansion of both displacement fields are

0 =4 [(Inr — D(0) — Ky (0)],

(
( 3.31
0 = Au[(Inr)er (0) + ha(0)] (3.31)

with w(0) = cos(0 — 0,) for the non-linear medium and Eq. (3.16) for linear medium.

As has been shown (cf. Eq. (3.24)), the stresses for medium (1) are singular with singularity like »~ when
r tends to zero. This suggests that the next term for the displacements in the linear medium behaves like
71~V This can be found analytically by the complex representation method (cf. Muskhelishvili (1953)). The
stress and displacement fields are written in terms of two analytic functions of the complex variable z = re'
as follows

O+ 0gp =2 {(P,(Z) + Q”’(Z)J7

O — oo+ 210,9 = =2 {Z(p”(z) —l—;ﬁ'(z)} , (3.32)

2u(u, + iug) = e [qu(z) —z¢'(2) — Wz)],

where the bar denotes the complex conjugate.
As a displacement field with singularity like '~V is expected, the functions

o) =N, Y =p (3.33)

are taken where o and f are complex constants.
Imposing the boundary conditions

T
0229) :053) =0 on@= ~5 (3.34)
A el no—o

the following values for the coefficients a = oy + iy and f§ are found (note that in the stresses a%) and aé?,
there is no contribution from the leading term of the displacements, cf. Eq. (3.18))
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o = ﬁ {% [2(1 — N)A(0) +B’(0)] [1 — 2N — cos(nN)] + B(0) sin(rcN)}, (3.35)
o = ﬁ {]i\f [2(1 — N)A(0) 4+ B'(0)] sin (nN) + B(0)[3 — 2N — cos (TEN)]} (3.36)
with
A= (3—-2N)(1 —2N)—2cos(nN) — 1, (3.37)
and
B = ae™ + (1 —N)a (3.38)
So the asymptotic expansions for the displacements in medium (2) are (cf. Egs. (3.16) and (3.32))
1 -1
Ufz) = Al |:<1nl" — W)CU(H) — Z+ 1 960,(6):| + rl_Ndjiz)(g), (3 39)
1 -1 '
uéz) =4 Klnr + K—H)w/(Q) + z 1 0(0(0)} + rI*Ndif,z)(Q),

where

B2 (0) +i0(0) = ——

koe N — (1 — N)ae V0 — pel™¥=2°]
21, [ ( ) }

(3.40)
The next step would be to add a suitable term in the asymptotic expansion for the displacements in the

non-linear medium that matches with the displacements in medium (2) on the interface. Eq. (3.39) suggests
a solution in medium (1) of the form

u

Ar[(Inr — Dex(0) — Hy(0)] + @D (0),

) _
V= Ay [(Inr)'(0) + ha(0)] + () (0).

(
ul!

(3.41)

The angular coefficients <I>£1) and cb((,l) can be found by a similar procedure to that above.

In this case, the only non-zero contribution for the net force acting on the material comes from the
leading term of the linear medium. Taking a small contour around the point of the application (cf. Fig. 1),
the components of the net force are

0

. 2 .

F. = lim c? cosfedl = 4, Ha (—2sin0; + ncos0;),
e—0 —n/2 K+1

F, =0,

0

. . 2
F, = lim ¢@ sin0ed0 = A, 12

(3.42)
: K+1(—2c0501+nsin01).
£— —n/2

Imposing the boundary condition of a line force of strength P, i.e. F, = P and F, = 0, the constants
0, and A4, are

2 214 1
91:arctanE, A = w440t 1)

W. (3.43)
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3.3. Case N > 1

The solution for a line load acting on a half space of a power-law elastic material under conditions of
plane strain is of the form (Atkinson, 1973)

u, = Cn/(e)rlf(l/m —i—DV(H), (3 44)
uy = C(L = 2)n(0)~0 £ Dy (0), '
o, =2V, (1= 1) C (0)cn (o)L,

Oy =10, (3.45)

Or) = Opy = 099 = Oy = 07
where C is a constant that will be calculated later and D corresponds to a rigid body displacement. The
functions #(0) and v(0) are

n(0) = cos(a(f — 0)),

v(0) = cos (0 — 0) (3.46)

with

a= % <2 - le) (3.47)

and 60, 0, constants.

In the case N > 1, the above solution is taken as leading term of the asymptotic solution for the non-
linear material. Therefore, the leading term of the displacement field for the linear medium should be like
#1=(/N) when r tends to zero. This can be found by means of the complex representation method (cf. Eq.
(3.32)). If we suppose that the solution is a function of separable variables, we take

1 . 1 )
-2 1-(1/N) D i0, ) 1-(1/N) __ D —if, 4
@(z) = 2u, (“Z + 1) Y(z) =2, | Bz 1t (3.48)

with o« and § complex constants.
Imposing the conditions of continuity of displacements on the interface the following values for
o = o + 10, are found:

o :(C]V){asin(a@l)[rc— cos(%) +2<1 —Ji})} - cos(a01)<;]—2> sin(;)} (3.49)
oy —(CN){cos(af)])(;[—2> |:K—2<1 —i{) - cos(;)} +asin(a91)sin(;)} (3.50)

o

N

with
A(N):K2—2Kcos(£)+l—4 LAY (3.51)
N N
The condition of zero traction on the free surface gives
A 1
B =g "N 1—— ). 3.52
B =de + a( N> (3.52)

However, this solution is not valid when N satisfies 4(N) = 0.
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In this case, a solution of the form

2 A 2 .

o(z) =27V (5 logz + o) +K_|’lf21 el’2, Y(z) =27 (4 logz + BY) —K—_'tzle‘“)z (3.53)
has been found. The Appendix A contains the values of the constants o*, f*, * and 6". In this case, it is only
the leading term in the non-linear medium which contributes to the net force acting on the bimaterial.
Taking a small contour around the point of the application (cf. Fig. 1), the components of the net force are

n/2 N n/2 B
F, = lim ol cosO(ed) = -2V 1y, (1 —%) C/ ]Cn’(@)’N '(0) cos0d0,
=V Jo 0
F, =0, (3.54)
/2 1 N /2 No1
F. = lim aVsin0(ed0) = -2V 'y, (1 - N) C/ |Cn'(0)]" 1'(0)sin0d0.
= Jo 0

Imposing the boundary condition of a line force of strength P, the following system of equations with
unknowns 6; and C is obtained and can be solved numerically.

N n/2
P =2y, (1 — ]lv) CaN/ |Csin (a(0 — 0,))[" " sin (a(6 — 6;)) cos0d0, (3.55a)
0
/2 Vol
0= / |sin(a(6 — 6;))|" " sin(a(6 — 6,))sin6d6. (3.55b)
0

4. Numerical results and concluding remarks

For the anti-plane strain deformation case when N < 1, the expressions for the leading term of the
displacements in the two media are

b1 = A {Inr+ Gy(0) + PV Gy(0)} + o(r ) (o <0< g) (4.1a)
¢y = Ay Inr + A" Vcos((1 — N)(n — 0)) + o(r'™) (g<0<n)7 (4.1b)
where
2P
4=2o (42)

and P is the strength of the line force and

W 1+ @@y e

wo (I=N)sin[(1-N)5] 7

(4.3)

2 =

More details of these formulae are given in Section 2.1.
The differential equation (2.5) subject to the condition (2.6) gives the angular coefficient G;(0) corre-
sponding to the leading term of the displacement in the non-linear medium. Using the relation

d _dG dG d
do ~ d0 dG, 4G,

(4.4)
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Eq. (2.5) becomes
2(1 = N)Gy(0) + N(G,(0))* + (1 = N)In [1 n (Gg(e))z} — constant. (4.5)

By differentiating this differential equation several times and using the boundary conditions, the suc-
cessive derivatives of G;(6) evaluated on 6 = 0 are calculated to obtain the Taylor expansion of G;(6). In
Fig. 3, the function G;(0) is plotted for different values of the hardening coefficient, N.

The angular coefficient G,(0) of the next term should satisfy Eq. (2.10) and the conditions (2.11) and
(2.12). This differential equation has been solved numerically with the Runge-Kutta fourth order method.
Fig. 4 shows this function for various values of N < 1. The values of the constant 4; = 1 unit of length and
the ratio u, /i, = 1.5 have been used (cf. Egs. (4.1a) and (4.1b)).

It can be observed that, for fixed values of 0, both functions G, and G, decrease with increasing values of
N. For the corresponding plane strain case when N < 1 (Section 3.2.), the leading terms for the displace-
ment in the solution for the non-linear medium have the form

0 = Ai[g1(0) Inr + g2(0)],

u(

uglg = Ay [ (0) Inr + hy(0))], (46)
where

21(0) = cos (0 — 0,), (4.7)

hi(0) = —sin (0 — 0;) (4.8)
and

£:(0) = —g1(0) — 15(0) (4.9)

G2(6)
ro
(63}

|[——N=0.2 —-m— N=0.3 —&— N=0.4 ——N=0.5 -~ N=0.6 —— N=0.7]

Fig. 4. Angular coefficient G,(0) of #'~V for the displacement of the non-linear medium (anti-plane strain deformation) for different
values of N < 1.
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The leading solution in the linear medium has the form (3.16)

1 Kk—1
) b B k=Ll
um/h[(lnr K+1)cos(0 01)+K+103m(0 61)}, 410,

1
uézé = A, [— (1nr+—> sin(0 — 0;) +

K —1
o 19005(9—01)].

K+
Substituting Eqgs. (3.25) and (3.26) in Eq. (3.29) and applying the trapezoidal rule to the definite integrals in
the resulting equation, a differential equation for %,(0) is obtained, which is solved numerically using the
finite difference method. By dividing 7t/2 into the same intervals used in the trapezoidal rule, the differential
equation is discretised, obtaining a system of equations that, with the equation supplied by the boundary
conditions, is solved by Newton’s method. Fig. 5 shows the function 4, for different values of N < 1, where
the values 4, = 1 cm, x = 1.8 and u, = 7.5 x 10% Kp/cm? have been taken. The leading terms of the dis-
placements and normalised stresses G;; = g;;/r " are illustrated in Figs. 6 and 7, respectively.

When N > 1 (Section 3.3), the leading terms for the displacements in the solution for the non-linear
medium are

U, = Cn/(@)rl—(l/N)7

1 (4.11)
Uy = C<N — 2)1’[(0)7’1_(1/N),
where
n(0) = cos(a(6 — 0y)), (4.12)
1 1
=, /=[(2—-= 4.1
“ N( N) (4.13)
11 6
» /2
0-
.1-
2
.3-
T
< -4
L
.5-
.6-
.7-
.8-
-9 -

—>-N=0.8 -+ N=0.6 —+— N=0.4 —— N=0.2 —»—N=0.1

Fig. 5. Angular coefficient 4,(0) in leading term of the displacement uf,” of the non-linear medium (plane strain deformation) for
different values of N < 1 (cf. Eq. (3.31)).
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N=0.8

linear medium

non-linear medium

—7/2

4 linear medium

>—>

— 2

o

2

4217

3
linear medium non-linear mediu
1
0,
Ug1
-3
2 /2
3
linear medium non-linear medium
1 6,
|
u, -1
A
-3
<
S B

——r=0.01 —A—r=0.05 —%—r=010 ——r=0.30 —e—r=0.50 +r=1.00|

Fig. 6. Leading term of the displacements against 0 for various values of N < 1 (plane strain deformation).

2

and the constants C and 60, are determined by solving Eqgs. (3.55a) and (3.55b). Eq. (3.55b) has been solved
with the Bisection Method. Table 1 shows some of the results obtained for both constants for various
values of N when P/u; =1 unit of length.

The expression for leading term of the displacements in the linear medium has the form

Uy + iy = (/N0 |:Kuei(l(l/N))H _ (1 _ %)aei(H(l/N))H _ Be-it=a/mo|

(4.14)

The leading terms of the normalised displacements respect »'~(!/") for various values of N > 1 when
P/u, =1 unit of length and x = 1.8 are shown in Fig. 8. The cause of the change of sign in the dis-
placements in the linear material between N = 3.4 and N = 3.5 is the change of sign of the coefficient A(N)
between these values of N (cf. Eq. (3.51)).
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oo/ r™
2.5E+06

~z2 ] /2

[N=0.9 ——N=0.8 —A—N=0.5 —#—N=0.3 ——N=0.1|

Fig. 7. Leading term of the stresses against 0 for various values of N < 1 (plane strain deformation).

Table 1
Values for angle, 0, and constant, C in leading term of the displacements in the non-linear material (plane strain deformation with
N > 1, cf. Egs. (3.55a) and (3.55b)).

N 0, C

1.1 1.0022 7.1967
1.2 0.9990 4.0925
1.3 0.9960 3.0872
1.4 0.9930 2.6053
1.5 0.9901 2.3320
1.6 0.9872 2.1625
1.7 0.9845 2.0522
1.8 0.9818 1.9786
1.9 0.9792 1.9294
2.0 0.9767 1.8973
3.0 0.9553 1.9429
4.0 0.9393 2.1813
5.0 0.9268 2.4631
6.0 0.9168 2.7598
7.0 0.9086 3.0625
8.0 0.9019 3.3675
9.0 0.8962 3.6734
10.0 0.8914 3.9792
15.0 0.8754 5.4999
20.0 0.8664 7.0053

Appendix A

The leading term of the displacement field corresponding to the linear medium for the case of plane
strain deformation when N > 1 and A(N) = 0 is (cf. Eq. (3.53))

_-am) ((@bo —aoby ag 2o, Al
o) = ( B b t) it (A1

_ - €tbo— b o, _ 2 A2
W(z) =z ( B2 by 0gz K+le (A2)

with
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-1/N 1-1/N
u /r Ug/r
linear medium 20 - non-linear medium linear medium 15 non-linear medium
15 - 10

5

——N=11-—=88N=15-—-N=20-—xN=25-—-e—-N=3.0

1-1/N
u, /N Ug/ r

linear medium non-linear medium 150 -

linear medium non-linear medium

——N=30-4aN=32-8 N=34—--N=35 N=3.6 N=38 —4—N=40—-e—N=50

Fig. 8. Leading term of the normalised displacements against 0 for various values of N > 1 (plane strain deformation).

- — 1
aO:U(K—em/N>+2U<1_ﬁ)7 (A3)
a; = inUe ™ - 20U, (A.4)
. (T 1
boZKTCSlIl(ﬁ)‘FS(lN), (AS)
— w2 LA
by = km cos(N) 4, (A.6)
w=ul1-2 (k+e™N) + T re ™V +2 1oL 2—1 (A7)
0 N N ’ .

¢ = —U{ei“/N {1 + in<1 - %)] + K} - U[imce“f/N + 4(1 - zlv)} (A.8)
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and the constant U is related with the displacements on the interface (cf. Eq. (3.44))

PG = 241 (uf(0 = 0) + i (0 = 0)) (A9)
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